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Composite stimulated Raman adiabatic passage
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We introduce a high-fidelity technique for coherent control of three-state quantum systems, which combines two
popular control tools—stimulated Raman adiabatic passage (STIRAP) and composite pulses. By using composite
sequences of pairs of partly delayed pulses with appropriate phases, the nonadiabatic transitions, which prevent
STIRAP from reaching unit fidelity, can be canceled to an arbitrary order by destructive interference, and
therefore, the technique can be made arbitrarily accurate. The composite phases are given by simple analytic
formulas, and they are universal for they do not depend on the specific pulse shapes, the pulse delay, and the
pulse areas.
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I. INTRODUCTION

Among the many possibilities for coherent manipulation
of quantum systems, stimulated Raman adiabatic passage
(STIRAP) is one of the most widely used and studied [1].
This technique transfers population adiabatically between
two states |1〉 and |3〉 in a three-state quantum system
without populating the intermediate state |2〉 even when the
time-delayed driving fields are on exact resonance with the
respective pump and Stokes transitions. The technique of
STIRAP relies on the existence of a dark state, which is a
time-dependent coherent superposition of the initial and target
states only and which is an eigenstate of the Hamiltonian
if states |1〉 and |3〉 are on two-photon resonance. Because
STIRAP is an adiabatic technique, it is robust to variations in
most of the experimental parameters.

In the early applications of STIRAP in atomic and molecu-
lar physics, its efficiency, most often in the range of 90%–95%,
has barely been scrutinized because such an accuracy suffices
for most purposes. Because STIRAP is resilient to decoherence
linked to the intermediate state (which is often an excited state),
this technique has quickly attracted attention as a promising
control tool for quantum-information processing [2]. The
latter, however, demands very high fidelity of operations with
the admissible error at most 10−4, which is hard to achieve with
the standard STIRAP because, due to its adiabatic nature, it
approaches unit efficiency only asymptotically as the temporal
pulse areas increase. For usual pulse shapes, e.g., Gaussian,
the necessary area for the 10−4 benchmark is so large that it
may break various restrictions in a real experiment.

Several scenarios have been proposed to optimize STIRAP
in order to achieve such an accuracy. Because the loss of
efficiency in STIRAP derives from incomplete adiabaticity,
Unanyan et al. [3] and later, Chen et al. [4], have proposed to
annul the nonadiabatic coupling by adding a third pulsed field
on the transition |1〉 → |3〉. However, this field must coincide
in time with the nonadiabatic coupling exactly; its pulse area,
in particular, must equal π , which makes the pump and Stokes
fields largely redundant. An alternative approach to improve
adiabaticity is based on the Dykhne-Davis-Pechukas formula
[5], which dictates that nonadiabatic losses are minimized
when the eigenenergies of the Hamiltonian are parallel. This
approach, however, prescribes a strict time dependence for the

pump and Stokes pulse shapes [6] or for both the pulse shapes
and the detunings [7].

Another basic approach to robust population transfer, which
is an alternative to adiabatic techniques, is the technique of
composite pulses, which is widely used in nuclear magnetic
resonance [8] and, more recently, in quantum optics [9,10].
This technique, implemented mainly in two-state systems,
replaces the single pulse used traditionally for driving a
two-state transition by a sequence of pulses with appropriately
chosen phases; these phases are used as a control tool for
shaping the excitation profile in a desired manner, e.g.,
to make it more robust to variations in the experimental
parameters—intensities and frequencies. Recently, we have
proposed a hybrid technique—composite adiabatic passage
(CAP)—which combines the techniques of composite pulses
and adiabatic passage via a level crossing in a two-state system
[10]. CAP can deliver extremely high fidelity of population
transfer, far beyond the quantum computing benchmark and far
beyond what can be achieved with a single frequency-chirped
pulse. Recently, the CAP technique has been demonstrated
experimentally in a doped solid [11].

In this paper, we combine the two basic techniques—of
composite pulses and STIRAP—into a hybrid technique,
which we name composite STIRAP. This technique, which
represents a sequence of an odd number of forward and back-
ward ordinary STIRAPs, |1〉 → |3〉 → |1〉 → |3〉 → · · · →
|1〉 → |3〉, adds the very high fidelity of composite pulses
to STIRAP. Each individual STIRAP can be very inaccurate,
the affordable error being as much as 20%–30%, but all
errors interfere destructively and cancel in the end, thereby,
producing population transfer with a cumulative error far
below the quantum computing benchmark of 10−4. We derive
an analytical formula for the composite phases, applicable to
an arbitrary odd number of pulse pairs N ; the phases do not
depend on the shape of the pulses and their mutual delay.

The dynamics of a three-state � system (Fig. 1) is described
by the Schrödinger equation,

ih̄ ∂tc(t) = H(t)c(t), (1)

where the vector c(t) = [c1(t),c2(t),c3(t)]T contains the three
probability amplitudes. The Hamiltonian in the rotating-wave
approximation and on two-photon resonance between states
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FIG. 1. (Color online) Composite STIRAP. The population is
transferred from state |1〉 to state |3〉 via a sequence of pump-Stokes
pulse pairs. Top: on one-photon resonance, the order of the pump
and Stokes pulses is reversed from pair to pair, whereas, Bottom: off
single-photon resonance, it is the same for all pulse pairs.

|1〉 and |3〉 is

H(t) = h̄

2

⎡
⎢⎣

0 �p(t) 0

�∗
p(t) 2� − iγ �s(t)

0 �∗
s (t) 0

⎤
⎥⎦, (2)

where �p(t) and �s(t) are the Rabi frequencies of the pump
and Stokes fields, � is the one-photon detuning between
each laser carrier frequency and the Bohr frequency of the
corresponding transition, and γ is the population loss rate from
state |2〉; we assume γ = 0. States |1〉 and |2〉 are coupled by
�p(t), whereas, states |2〉 and |3〉 are coupled by �s(t). The
evolution of the system is described by the propagator U,
which connects the amplitudes at the initial and final times ti
and tf : c(tf ) = U(tf ,ti)c(ti). The mathematics is substantially
different when the pump and Stokes fields are on-resonance or
far off-resonance with the corresponding transition: Therefore,
we consider these cases separately.

II. RESONANT STIRAP

First, we will consider the one-photon resonance � = 0.
Then, there is a mapping between the three-state problem and
a corresponding two-state problem [12,13] described by the
Hamiltonian,

H(t) = h̄

2

[−�s(t) �p(t)

�p(t) �s(t)

]
. (3)

[In this mapping, �p(t) and �s(t) are assumed real.] In general,
if the two-state propagator is parametrized in terms of the
complex Cayley-Klein parameters a and b (|a|2 + |b|2 = 1)
as

U =
[

a b

−b∗ a∗

]
, (4)

we can write the propagator of STIRAP as

U =

⎡
⎢⎣

|a|2 − |b|2 −2i Im(ab∗) 2 Re(ab∗)

2i Im(ab) Re(a2 + b2) −i Im(a2 − b2)

−2 Re(ab) −i Im(a2 + b2) Re(a2 − b2)

⎤
⎥⎦.

(5)

If �p(t) and �s(t) are reflections of each other, �p(t) =
�s(τ − t) [e.g., if �p(t) and �s(t) are identical symmetric
functions of time], where τ is the pulse delay, then, it is easily
shown that Im a = −Im b. We use this property to parametrize
the STIRAP propagator (5) as

a = cos θ cos φ + i√
2

sin θ, (6a)

b = cos θ sin φ − i√
2

sin θ. (6b)

In the adiabatic limit, Re(ab) = 1/2; hence, θ = π/2.
For backward STIRAP from state |3〉 to state |1〉, we need

to exchange the order of the pump and Stokes pulses. The
corresponding propagator is

Ũ = RUR, R =

⎡
⎢⎣

0 0 1

0 1 0

1 0 0

⎤
⎥⎦. (7)

A constant phase shift in the Rabi frequencies, �p(t) →
�p(t)eiα and �s(t) → �s(t)eiβ , is imprinted into the prop-
agator as

Uα,β = U∗,  =

⎡
⎢⎣

eiα 0 0

0 1 0

0 0 e−iβ

⎤
⎥⎦. (8)

A sequence of N STIRAPs (where N is an odd number), each
with phases αk and βk , produces the propagator,

U(N) = UαN ,βN
ŨαN−1,βN−1 . . . Uα3,β3 Ũα2,β2 Uα1,β1 . (9)

Next, we expand the propagator elements U(N)
11 and U(N)

21 around
θ = π/2 and find the phases which nullify as many terms
in the expansions as possible. We have, thereby, derived the
following analytic formula for the composite-STIRAP phases:

α
(N)
k = π

⌊
k

2

⌋
− π

N

⌊
k − 1

2

⌋(
1 +

⌊
k − 1

2

⌋)
, (10a)

β
(N)
k = α

(N)
N+1−k, (10b)

where k = 1,2, . . . ,N . The first few cases are explicitly shown
in Table I. Since no assumptions are made about the Cayley-
Klein parameters in the derivation, the composite phases (10)
do not depend on the pulse shapes, the pulse delay, and the
pulse areas. We note here that, since these phases are solutions
of a system of nonlinear algebraic equations, other solutions
also exist; they, however, produce the same results as the set
(10). Moreover, a common shift in the pump (or/and Stokes)
phases does not change the fidelity but causes only a phase
shift in the probability amplitudes.

TABLE I. Pump and Stokes phases for different numbers of pulse
pairs N for resonant composite STIRAP.

N Phases (α1,β1; α2,β2; . . . ; αN,βN )

3 (0,1; 3,3; 1,0)π/3
5 (0,4; 5,8; 3,3; 8,5; 4,0)π/5
7 (0,9; 7,1; 5,8; 12,12; 8,5; 1,7; 9,0)π/7
9 (0,16; 9,6; 7,15; 16,3; 12,12; 3,16; 15,7; 6,9; 16,0)π/9
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FIG. 2. (Color online) Infidelity 1 − P3 as a function of the peak
Rabi frequency for a single STIRAP, compared with three- and
five-component composite STIRAP. The pulse shapes are given by
left frames: Eq. (11) and right frames: Eq. (12). Upper frames: the
composite phases are given by Eq. (10) for resonant STIRAP and
lower frames: Eq. (13) for far-off-resonant STIRAP. The dashed curve
in the upper left frame is the fidelity of composite STIRAP when a
random error of 1% is included in the phases.

In Fig. 2, we compare the efficiency of a single STIRAP
with composite STIRAP for N = 3 and 5. We assume that the
pump and Stokes pulses share the same shape, which we take
to be either Gaussian,

�p = �0e
−(t−τ/2)2/T 2

, �s = �0e
−(t+τ/2)2/T 2

, (11)

or sin2,

�p = �0 sin2

(
π

t − τ

T

)
, t ∈ [τ,T + τ ], (12a)

�s = �0 sin2

(
π

t

T

)
, t ∈ [0,T ], (12b)

where T is the pulse width and τ is the delay between the
pulses. We take a delay τ = T for Gaussian shapes and
τ = T/π for sin2 shapes in the simulations. In Fig. 2, we
see that even a sequence of three STIRAPs is enough to
achieve extremely high fidelity with an error below 10−6,
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FIG. 3. (Color online) Left: final population P3 as a function
of the pulse delay and the peak Rabi frequency for a single resonant
STIRAP and Right: a sequence of five resonant STIRAPs with phases
given by Eq. (10) for sin2 pulse shapes Eqs. (12).

TABLE II. Phases for different number N of pulse pairs for
off-resonant composite STIRAP. Because only the phase difference
αk − βk between the pump and the Stokes phases is important, we
set all Stokes phases βk = 0 and show the pump phases αk only
(k = 1,2, . . . ,N ).

N Phases (α1,α2, . . . ,αN )

3 (0,1,0)2π/3
5 (0,2,1,2,0)2π/5
7 (0,3,2,4,2,3,0)2π/7
9 (0,4,3,6,4,6,3,4,0)2π/9

which is impossible with a single STIRAP, unless we use
huge pulse areas, far outside the axis range. The robustness
of the method is seen in Fig. 3, which compares the fidelity
of a single STIRAP and composite STIRAP with N = 5. The
high-fidelity region with an error below 10−4 of composite
STIRAP is hugely expanded compared to a single STIRAP.

III. NONRESONANT STIRAP

We now focus on the nonresonant case of Hamiltonian (2)
� �= 0. If the detuning is small �T � 1, then the composite
phases do not deviate much from the resonant formulas (10),
and we can still use them. However, if the detuning gets larger,
then the composite phases depend on �; an exact formula for
the phases does not appear to exist, and their values are to be
calculated numerically. When the detuning is very large, we
can adiabatically eliminate state |2〉, and we are left with an
effective (symmetric) coupling �eff = −�p�s/2� between
states |1〉 and |3〉 and an effective (antisymmetric) detuning
�eff = (|�p|2 − |�s |2)/2�. This effective two-state problem
reduces to the already studied CAP technique [10] where the
phases are known and an analytical formula also exists

α
(N)
k − β

(N)
k =

(
N + 1 − 2

⌊
k + 1

2

⌋)⌊
k

2

⌋
π

N
. (13)

The values for the first few cases are given in Table II.
The fidelity of the nonresonant composite STIRAP is

illustrated in Figs. 2 (bottom frames) and 4. Again, composite
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FIG. 4. (Color online) Left: final population P3 as a function of
the pulse delay and the peak Rabi frequency for a single off-resonant
STIRAP and Right: a sequence of five STIRAPs with phases given by
Eq. (13) for sin2 pulse shapes Eqs. (12). The detuning is � = 100/T .
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FIG. 5. (Color online) Infidelity versus decay rate. We assume
sin2 pulse shapes with �0 = 30/T and � = 0.

STIRAP greatly outperform a single STIRAP in terms of
fidelity and robustness.

IV. DISCUSSION

Composite STIRAP may be affected by several sources of
errors. In the first place, errors in the composite phases should
be kept low in order to keep the high fidelity. We found that
an error below 1% in the phases, which is relatively easy to
achieve in the laboratory, can be tolerated. In Fig. 2, we have
added a curve, which demonstrates the fidelity of composite
STIRAP for N = 3 and a standard deviation of 0.01 rad in the
composite phases;1 despite this error, the technique still has
ultrahigh fidelity with an error below 10−4.

STIRAP owes much of its great popularity to the fact
that it can operate, unlike other techniques, in the presence
of population losses from middle state |2〉. However, when
ultrahigh fidelity is aimed for, the presence of such losses
can reduce the fidelity, and they cannot be very large. (The
decay can be harmful only in the resonant case, whereas,
an off-resonant composite STIRAP is much more resilient
to them.) We have found that, in the resonant case, if the decay
rate is sufficiently low or if the pulse duration is sufficiently
short (γ T � 1), a composite STIRAP still maintains high
fidelity and outperforms the standard STIRAP as seen in Fig. 5.
As γ increases above 1/T , STIRAP behaves better, but the

1The distribution of the phases is assumed normal with a standard
deviation of 0.01 rad, and the curve is calculated after averaging a
large number of Monte Carlo simulations.

fidelities of both STIRAP and composite STIRAP drop rapidly
and are inadequate for quantum computing purposes. The
presence of losses can be compensated with a higher Rabi
frequency as a rough estimate of the scaling law �0 ∝ √

γ

applies. It is also important to note that, in the presence of
decay, the pulse pairs should be as close to each other as
possible as in the inset of Fig. 5. This is readily achieved
with microsecond and nanosecond pulses, e.g., produced by
acousto-optic modulators as has been demonstrated recently
in a doped-solid experiment [14].

Because a composite STIRAP involves N pulse pairs, its
duration is longer than a STIRAP by the same factor, given
that there are no gaps between the pulse pairs as shown in the
inset of Fig. 5. In return, a composite STIRAP gives a fidelity
which cannot be achieved with an ordinary STIRAP, even
with the much higher pulse areas. Thus, the main advantage of
composite STIRAP over an ordinary STIRAP is the ultrahigh
fidelity. The main advantage of composite STIRAP over
other variations of a STIRAP, which provide “shortcuts”
to adiabaticity by eliminating or reducing the nonadiabatic
coupling [3,4,6,7,15] is the simplicity of implementation,
which requires just the control of the relative phases between
the pulse pairs, and the preserved robustness of STIRAP
with respect to variations in the interaction parameters. The
shortcut techniques use less pulse area and, therefore, are faster
than composite STIRAP (although still slower than resonant
techniques which use areas of just π

√
2 [16]), but they give

away most of the robustness of STIRAP by imposing strict
restrictions on the pulse shapes and some of them on the
detunings; some of them even place considerable transient
population in the intermediate state.

V. CONCLUSION

The hybrid technique proposed here combines two popular
methods for manipulation of quantum systems—STIRAP and
composite pulses. It greatly outperforms the standard STIRAP
in terms of fidelity due to cancellation of the nonadiabatic
errors by destructive interference. The greatly enhanced
fidelity, well beyond the quantum computing benchmark,
while preserving STIRAP’s robustness against variations in the
interaction parameters, makes composite STIRAP a promising
technique for quantum-information processing.
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